物体検出

はぐれ弁理士 PA Tora-O です。前回(第3回)では、SSDの実施例について解説しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、クレームを含む発明ストーリーを作成し、これまで2回分の検討 ...

物体検出

はぐれ弁理士 PA Tora-O です。前回(第3回)では、YOLOの技術的特徴について解説しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回分 ...

NN共通

はぐれ弁理士 PA Tora-O です。前回(第3回)では、ResNet の改良技術について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3 ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、Unrolled GAN の学習メカニズムについて概説しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、StackGAN の発明ポイントについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、こ ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、CycleGAN における学習メカニズムについて概説しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作 ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、Pix2Pix におけるノイズの入力機構を省略できた理由について解説しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを試作し ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、VAEとGANを比較し、CGANまで発展させた場合のGANモデルの拡張性・応用性の高さについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回 ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、VAEの理論的な裏付けについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、これまで3回 ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第3回)では、アテンション機構の変形例について検討しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、これまでの検討を踏まえ、クレームを含む発明ストー ...