生成モデル

はぐれ弁理士 PA Tora-O です。前回(第3回)では、StackGAN の発明ポイントについて説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、クレームを含む発明ストーリーを作成し、こ ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第2回)では、StackGAN の実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、本発明のポイントについて考察します。

従 ...

生成モデル

はぐれ弁理士 PA Tora-O です。前回(第1回)では、StackGAN の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、StackGAN の実施例について説明します。

生成モデル

はぐれ弁理士 PA Tora-O です。今回のテーマとして、敵対的生成ネットワーク(GAN)ベースのデータ変換処理の一手法である StackGAN を題材に取り上げます。

背景

生成モデルのバリエーション(Variants) ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第3回)では、アテンション機構の変形例について検討しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第4回)は、これまでの検討を踏まえ、クレームを含む発明ストー ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第2回)では、“Seq2Seq with Attention” について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回)は、“Seq2Seq wi ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第1回)では、アテンション機構の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第2回)は、アテンション機構の実装例として、“Seq2Seq ...

自然言語処理

はぐれ弁理士 PA Tora-O です。今回のテーマとして、ニューラル機械翻訳(NMT)における頻出の手法であるアテンション機構(Attention Mechanism)を題材に取り上げていきます。

背景

いわゆる “Wor ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第3回)では、Seq2Seq の実施例について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回は、過去3回分の検討を踏まえ、発明ストーリーの一例を提示します ...

自然言語処理

はぐれ弁理士 PA Tora-O です。前回(第2回)では、Seq2Seq の前提知識として、再帰型ニューラルネットワーク(RNN)の概要について説明しました。改めて復習されたい方は、こちらのリンクから確認をお願いします。今回(第3回 ...